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A B S T R A C T   

Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the 
cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset 
of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF- 
1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important 
stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local 
environment or multiple organ systems are especially important in the context of progression from cardiac 
hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding 
the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding 
mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain 
therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine 
diseases.   

1. Cardiac hypertrophy 

Cardiovascular diseases still represent the main cause of morbidity 
and mortality, and estimates indicate that these diseases will be 
responsible for the deaths of more than 23 million people in 2030 
worldwide (Laslett et al., 2012). In general, cardiovascular diseases are 
characterized by cardiac morphological and physiological changes that, 
in most cases, lead to heart failure - a clinical syndrome that results from 
impairment of the ability of the ventricle to fill or eject blood - and death 
because the heart is no longer able to maintain the oxygenated blood 
supply to different organs. 

Although different stimuli can induce heart failure, which is 
considered the final common pathway of every heart disease, this con-
dition is typically preceded by cardiac hypertrophy, which is initially 
characterized by an increase in volume of cardiomyocytes and, conse-
quently, by an increase in the ventricular wall. Cardiac hypertrophy 
presents different phenotypes related to the way the cardiomyocytes 
increase in volume, which can occur with the addition of contractile 
units (sarcomeres) in series or in parallel, thus installing a concentric or 
eccentric hypertrophy, respectively. While in concentric hypertrophy, 

there is thickening of the ventricular wall to the detriment of the ven-
tricular cavity, in eccentric hypertrophy, the ventricular wall is thin, 
with an increase in the ventricular cavity, and these different geometric 
arrangements leads to profound functional changes. Thus, initially, 
myocardial growth corresponds to an adaptive or compensatory 
response in an attempt to normalize ventricular wall stress and ensure 
the maintenance of contractile function. This condition can be main-
tained over time, characterizing a physiologic hypertrophy. However, 
depending on the stimulus and, in some cases, the intensity and/or 
persistence, different molecular mechanisms can be triggered, and this 
growth is accompanied by adverse cardiovascular events characterizing 
a pathological hypertrophy. From this stage, cardiac hypertrophy pre-
disposes the heart to arrhythmic events, cell death and an increase in the 
number of non-muscle cells, mainly fibroblasts, resulting in contractile 
deficiency and heart failure (Grossman et al., 1975). In part, the ar-
rhythmias occur due to increased expression of HCN (hyper-
polarization-activated cyclic nucleotide-gated) channels in hypertrophic 
cardiomyocytes and end-stage failing hearts since HCN channels play 
critical roles in the generation and conduction of electrical impulse 
(Stillitamo et al., 2008). 
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In the past decade, a growing number of studies have suggested that 
previously unrecognized mechanisms, including cellular metabolism, 
proliferation, non-coding RNAs, immune responses, translational regu-
lation, and epigenetic modifications, positively or negatively regulate 
cardiac hypertrophy (Nakuma and Sadoshima, 2018). Whatever the 
activating mechanisms, the initial stimuli for hypertrophic processes can 
be grouped into biomechanical and stretch-sensitive stimuli, in which 
are stimuli that lead to pressure or volume overload, and 

neurohumoural stimuli, which are associated with adrenergic activation 
or the release of cytokines, peptide growth factors or hormones (Heineke 
and Molkentin, 2006). 

Considering the environment to which cardiomyocytes are exposed 
and its consequences, different endocrine factors can act directly on 
these cells, activating specific signalling pathways and promoting 
morphological and functional changes, triggering cardiac damage and 
heart failure, and further exacerbating the patient’s condition. 

Fig. 1. A schematic of the main endocrine factors and 
signaling pathway involved in physiological and patho-
logical cardiac hypertrophy. Classically, hormonal stimuli 
such as insulin, IGF-1, estrogen, VEGF and thyroid hor-
mone lead to activation of PI3K/Akt/mTOR, ERK and 
AMPK and installation of physiological hypertrophy. On 
the other hand, hormones such as Ang II, ET-1, catechol-
amines, aldosterone and testosterone are largely associ-
ated with the activation of p38, JNK, ERK, Calcineurin/ 
NFAT, CaMKII/MEF2 and AMPK and development of 
pathological hypertrophy. It is important to note that 
endocrine signaling is complex and there is integration 
and cross talk between various pathways in the develop-
ment of the hypertrophic phenotype. Estrogen, adipo-
nectin and CNP are capable to counteract the pathological 
response. IGF-1: insulin-like growth factor 1; VEGF: 
vascular endothelial growth factor receptor; Ang II: 
Angiotensin II; ET-1: endothelin; CNP: C-natriuretic pep-
tide. PI3K: phosphoinositide 3-kinases; Akt: serine/threo-
nine protein kinase B; mTOR: mammalian target of 
rapamycin; ERK: extracellular signal-related kinase; 
AMPK: AMP-activated protein kinase; JNK: c-Jun N-ter-
minal kinases; p38: p38 mitogen-activated kinases; NFAT: 
nuclear factor of activated T cells; CaMKII; Ca2+-/ 
calmodulin-dependent protein kinase; MEF2: myocyte 
enhancer factor 2.   

Fig. 2. Overview of the major signaling pathways involved in cardiomyocyte hypertrophy. IGF-1: insulin-like growth factor 1; IGFR: insulin-like growth factor 
receptor; IR: insulin receptor; Ang II: Angiotensin II; ET-1: endothelin; GPCR: G protein-coupled receptor; ER: estrogen receptor; VEGF: vascular endothelial growth 
factor; VEGFR: vascular endothelial growth factor receptor; Ca2+: calcium; ROS: reactive oxygen species; CaMKII: Ca2+-/calmodulin-dependent protein kinase; 
HDAC: histone deacetylase; MEF2: myocyte enhancer factor 2; NFAT: nuclear factor of activated T cells; AP-1: activator protein-1; MKK4: mitogen-activated protein 
kinase kinase 4; Ras: proto-oncogene serine/threonine-protein kinase; ERK: extracellular signal-related kinase; JNK: c-Jun N-terminal kinases; p38: p38 mitogen- 
activated kinases; PI3K: phosphoinositide 3-kinases; PDK: phosphoinositide-dependent kinase; Akt: serine/threonine protein kinase B; mTOR: mammalian target 
of rapamycin; 4-EBP1: eukaryotic translation initiation factor 4E-binding protein 1; eIF4E: eukaryotic translation initiation factor 4E; S6K1: ribosomal protein p70/85 
S6 kinase-1; LKB1: liver kinase B1; TAK: transforming growth factor β-activated kinase 1; AMPK: AMP-activated protein kinase. 
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Regardless of the hormonal stimuli to which the cardiomyocytes are 
subjected, multiple signalling pathways are then recruited. Although 
many of these signalling pathways can interconnect, different molecular 
patterns are identified according to the initial stimuli that trigger hy-
pertrophy (Chien, 1993). This molecular signalling network results in 
cellular changes that affect the transcriptional pattern of car-
diomyocytes to direct mechanisms that involve the regulation of intra-
cellular calcium, protein synthesis, metabolism, autophagy, oxidative 
stress or even inflammation. 

In addition to this complex molecular signalling network that is 
activated as a function of the initial stimuli, the growth of the car-
diomyocytes per se can also contribute to the generation of a hypoxic 
environment, since, with increasing distance, the diffusion of oxygen 
and other substrates may be compromised, besides the increased con-
sumption of oxygen that occurs in the hypertrophied cells (Friehs and 
del Nido, 2003). 

There is now a growing interest in investigating the contribution of 
specific local stimuli in the “cardiomyocyte environment” that are 
responsible for the activation of certain signalling pathways and are 
selectively involved in the installation of physiological or pathological 
cardiac growth. Although the signalling pathways are complex and have 
many interactions between the components, some pathways are pre-
dominant and associated with the different stages of cardiac hypertro-
phy; thus, these pathways are targets of potential therapies. The role that 
some endocrine factors play in activating the signalling pathways that 
trigger cardiomyocyte hypertrophy will be discussed in this review. 

2. Signaling pathways associated with endocrine factors- 
induced cardiomyocyte hypertrophy 

Diverse hormones act on the heart and contribute to the pathological 
cardiac hypertrophy development and even the progress to heart failure. 
Hormones such as catecholamines, angiotensin II (Ang II) and endo-
thelin (ET-1) are largely associated to this context. Additionally, some 
steroid hormones and many others endocrine factors are also known to 
result in similar cardiac outcome. On the other hand, thyroid hormones, 
insulin, insulin-like growth factor 1 (IGF-1) and estrogen generally have 
been associated to the physiological cardiac hypertrophy. However, it is 
necessary to emphasize that the signaling pathways related to the 
development of hypertrophy are extremely interconnected and it is not 
uncommon that, depending on specific conditions, which sometimes we 
do not even know, the pathways related to the phenotype of physio-
logical hypertrophy are also activated in the pathological condition and 
vice versa. Interestingly, some factors like estrogen as well as adipo-
nectin and C-Natriuretic Peptide (CNP) are capable to counteract the 
pathological response (Fig. 1). 

As previously pointed out each hypertrophy phenotype can be 
regulated by distinct cellular signaling or by multiple interconnected 
signaling pathways. This review provides a brief overview of hypertro-
phic signaling mechanisms activated by PI3K/Akt/mTOR, MAPK, AMPK 
and calcium, followed by a description of the interaction between these 
signaling pathways and the main endocrine stimuli that lead to cardiac 
hypertrophy. Particularly, thyroid hormones, insulin, IGF-1, estrogen, 
catecholamines, Ang II and ET-1 will be addressed here, while other 
relevant endocrine effectors will be addressed in another time. A 
comprehensive figure presenting the main endocrine ligands, receptors 
and signaling pathways activated in the hypertrophic context is sum-
marized in Fig. 2. In addition to the main signaling pathways associated 
with protein synthesis and cardiomyocyte growth, other interesting 
mechanisms activated during the cardiac remodeling setting will be 
reported. These are often involved in processes such as angiogenesis, 
inflammation, oxidative stress and protein degradation and, as conse-
quence, also influence the cardiac growth. 

2.1. PI3K/Akt/mTOR signalling 

Phosphoinositide 3-kinases (PI3Ks) are a family of heterodimeric 
lipid kinases that releases inositol lipid products from the plasma 
membrane, mediating intracellular signalling (Toker and Cantley, 1997; 
Vanhaesebroeck et al., 1997). PI3K activation in cardiomyocytes is 
related to a wide spectrum of biological processes, particularly those 
that control cell growth, survival and metabolism (Ghigo et al., 2017). 
The three major classes of PI3K (classes I, II and III) have been described 
based on their molecular structure, preferred lipid substrate and cata-
lytic domain homology (Vanhaesebroeck et al., 2001). Class I PI3Ks are 
heterodimeric enzymes composed of a regulatory and catalytic subunit 
and are subdivided into two subgroups: class IA (p110α, β and δ catalytic 
and p85 or p55 regulatory subunits) and class IB (p110γ catalytic and 
p101 regulatory subunits) (Vanhaesebroeck et al., 1997). The subunits 
that are predominantly expressed in the heart are p110α (class IA) and 
p110γ (class IB). 

The PI3K catalytic p110α subunit is coupled to receptor tyrosine 
kinase and is classically activated in cardiomyocytes by endocrine fac-
tors, such as thyroid hormone, insulin-like growth factor 1 (IGF-1), 
vascular endothelial growth factor (VEGF) and estrogen (Kenessey and 
Ojamaa, 2006; McMullen et al., 2004; Simoncini et al., 2000; Zhou et al., 
2005). Activation of this subunit has been shown to be critical for 
physiological but not pathological cardiac hypertrophy (McMullen 
et al., 2003). In this context, transgenic mice with increased PI3K 
(p110α) activity presented cardiac hypertrophy with preserved cardiac 
function and lifespan (Shioi et al., 2000). However, p110α knockout 
mice were embryonically lethal (Bi et al., 1999). 

On the other hand, activation of the p110γ subunit occurs through 
stimulation of the Gβγ subunit of the G protein-coupled receptor (GPCR) 
(Oudit et al., 2004). Several studies have shown p110γ subunit activa-
tion by increased levels of Ang II, catecholamines, aldosterone and 
endothelin (ET-1) in cardiomyocytes (Oudit et al., 2004). p110γ acti-
vation is strongly associated with the negative regulation of cardiac 
contractility. Hence, PI3K (p110γ) knockout mice showed increased 
contractile function (Crackower et al., 2002). These transgenic mice 
were protected from catecholamine-induced cardiac dysfunction since 
the p110γ subunit contributes to β-adrenergic receptor internalization 
(Oudit et al., 2003; Oudit and Kassiri, 2007; Pretorius et al., 2009). 

Serine/threonine protein kinase B (Akt) is an important downstream 
target of PI3K that mediates its cellular signalling. Numerous studies 
have implicated the Akt family in protein synthesis stimulation, which is 
involved in the growth of cardiomyocytes (Shiojima and Walsh, 2006). 
The mammalian genome contains three Akt genes, which are located on 
different chromosomes and encode Akt1, Akt2 and Akt3 (Datta et al., 
1999; Scheid and Woodgett, 2001). While all Akt isoforms are widely 
expressed in mammals, Akt1 has elevated expression in cardiac cells 
(Matsui and Rosenzweig, 2005). 

In response to endocrine stimulation, Akt is recruited to the plasma 
membrane through its N-terminal PH domain. Membrane-associated 
Akt1 is phosphorylated by phosphoinositide-dependent kinase-1 
(PDK1) and phosphoinositide-dependent kinase-2 (PDK2) at serine 473 
and threonine 308, respectively, leading to its activation (Cantley, 
2002). Akt activation is closely related to cardioprotection, and it has 
been suggested that Akt1 is required for physiological but not patho-
logical heart growth. Hence, Akt1 knockout mice have blunted physio-
logical hypertrophic responses to swim training but not pathological 
responses to pressure overload (DeBosch et al., 2006). These results are 
consistent with the PI3K-p110α transgenic mouse phenotype. In addi-
tion, Akt1 knockout mice developed cardiac dilation and dysfunction 
(DeBosch et al., 2006). 

Insulin and IGF-1 are potent activators of PI3K/Akt1 in car-
diomyocytes. Increased cardiac IGF-1 production in athletes was shown 
to be associated with physiological cardiac hypertrophy in part due to 
Akt activation (Neri Serneri et al., 2001). Similarly, IGF-1 over-
expression in the heart induced heart growth and enhances cardiac 
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function besides PI3K/Akt signalling activation (McMullen et al., 2004). 
On the other hand, low cardiac IGF-I levels are associated with higher 
heart failure risk (Vasan et al., 2003). In addition, insulin receptor 
knockout mice due to Akt signalling suppressed showed decreased heart 
size and impaired contractile function (Belke et al., 2002; Shiojima et al., 
2002). Thus, the circulating level of IGF-I/PI3K(p110α)/Akt1 is 
inversely correlated with cardiovascular disease (Ungvari and Csiszar, 
2012). As a cardioprotective effect, IGF-1-Akt dramatically accelerates 
and amplifies the transcriptional reprogramming of fibroblasts to func-
tional cardiomyocytes, representing a potential approach for restoring 
cardiac function after myocardial injury (Zhou et al., 2015). Consistent 
with the role of PI3K/Akt signaling, diverse studies have showed that its 
activation by endocrine factors is essential to improve the cardiac con-
tractile function or even to attenuate the progression from cardiac hy-
pertrophy to heart failure. In this context, this signaling pathway has 
been demonstrated to be involved with increased contractility observed 
in thyroid hormone-mediated cardiac hypertrophy (Diniz et al., 2009; 
Kenessey and Ojamaa, 2006) or after VEGF treatment (Shiojima et al., 
2005; Xu et al., 2011; Zhou et al., 2005). Likewise, the G protein-coupled 
estrogen receptor (ERβ) attenuated Ang II- or ET-1-induced pathological 
cardiomyocyte hypertrophy by upregulating the PI3K/Akt signalling 
pathway (Gonçalves et al., 2018; Pei et al., 2019). In addition, adipo-
nectin supressed pathological growth and fibrosis in cardiac cells 
through activation of Akt signalling pathway (Cao et al., 2014; Fujish-
ima et al., 2014). 

The predominant mechanism by which Akt regulates cellular tro-
phism occurs through activation of mammalian target of rapamycin 
(mTOR) (Sengupta et al., 2010). mTOR is part of two distinct ser-
ine/threonine kinase complexes (mTORC1 and mTORC2), which both 
regulate cardiac growth under physiological stimuli. Once activated, 
mTORC1 stimulates protein synthesis through two different pathways: 
1) activating the ribosomal protein p70/85 S6 kinase-1 (S6K1), which 
increases protein translation, or 2) releasing 4E-binding protein-1 
(4-EBP1) from eukaryotic translation initiation factor 4E (eIF4E), stim-
ulating the initiation of translation (Cantley, 2002; Proud, 2004). 
mTORC2 stimulates cardiomyocyte growth by directly phosphorylating 
and activating Akt, which in turn subsequently activates mTORC1 
(Sarbassov et al., 2005; Shiojima and Walsh, 2006). Thus, several studies 
have documented mTORC1 activation in IGF-1 receptor-, insulin-, lep-
tin- or thyroid hormone-mediated cardiomyocyte growth (Diniz et al., 
2009; Kenessey and Ojamaa, 2006; Sharma et al., 2007; Sen et al., 2013; 
Pires et al., 2017; Zeidan et al., 2011). In accordance with these data, it 
was recently demonstrated that elevated testosterone concentrations 
initially induced increased cardiac function (Wadthaisong et al., 2019) 
and cardiac hypertrophy by mTORC1/S6K1 activation (Altamirano 
et al., 2009). In conclusion, activation of PI3K/Akt/mTOR signalling has 
been shown to be fundamental for cardiomyocyte growth, particularly 
in response to physiological stimuli. 

2.2. MAPK signalling 

The mitogen-activated protein kinase (MAPK) pathway is a large 
family of kinases that ultimately culminate in activation of either 
extracellular signal-regulated kinases (ERK1 and ERK2, often termed 
ERK1/2), c-Jun N-terminal kinases (JNK1, 2 and 3), p38 mitogen- 
activated kinases (p38α, β, γ and δ) or big MAP kinase (BMK or ERK5) 
(Rose et al., 2010; Turner and Blythe, 2019). The signalling cascade is 
activated in cardiomyocytes by G-protein-coupled receptors (GPCRs) 
and receptor tyrosine kinases (RTKs) upon binding by ligands such as 
growth factors, cytokines, or hormones (Liu and Molkentin, 2016). Once 
activated, these kinases phosphorylate a variety of intracellular targets 
that include transcription factors, leading to reprogramming of gene 
expression involved in cell growth, differentiation, proliferation, 
mobility, and survival. Consequently, these subfamilies regulate mech-
anisms that are associated with cardiac regulation, including heart 
development, hypertrophy, and pathological remodeling (Wang, 2007). 

Even with a vast number of studies, the role of MAPK signalling in the 
heart has remained uncertain due to peculiar responses to activation of 
each subfamily in different settings of cardiac hypertrophy and heart 
failure. 

Activation of ERK1/2, frequently termed ERK as a singular noun, 
mediates both physiological and pathological cardiac hypertrophies. 
Besides, ERK1/2 activation is correlated with the maturation and hy-
pertrophy of fetal cardiomyocytes (Chattergoon et al., 2012). Transgenic 
mice with specific activation of MEK1-ERK1/2 signaling in the heart 
developed concentric hypertrophy that lacked signs of interstitial 
fibrosis, increased cardiac function and resistance to apoptosis, 
demonstrating a phenotype consistent with physiological hypertrophy 
(Bueno et al., 2000). In fact, in addition to role of ERK1/2 in coordi-
nating mechanisms that facilitate concentric hypertrophy, its activation 
also prevented eccentric growth in response to hormonal stimuli (Kehat 
et al., 2011). Then, some authors have described the influence of distinct 
endocrine factors on ERK activation and demonstrated a slight, rapid 
increase in phosphorylated ERK1/2 levels in cardiomyocytes that were 
stimulated with insulin and IGF-1 (Clerk et al., 2006), as well as in adult 
murine models stimulated with thyroid hormone (Araujo et al., 2010; 
Elnakish et al., 2012; Fernandes et al., 2011). 

However, although ERK1/2 activity has been associated with cardiac 
physiological growth, its role also was demonstrated to be involved in 
response to hormones that induce pathological heart growth, such as 
leptin, aldosterone, Ang II, ET-1 and catecholamines (Archer et al., 
2017; Chen et al., 2014; Clerk et al., 2006; Lee et al., 2019; Liu et al., 
2019; Rajapurohitam et al., 2012; Ren et al., 2010). In response to ag-
onists associated to GPCR such as Ang II, ET-1 and catecholamines, 
several studies have demonstrated that ERK1/2 activation is directly 
subject to redox regulation. In this sense, NADPH oxidase corresponds to 
a key system responsible for production of reactive oxygen species 
(ROS), which in turn activate ERK1/2 in mediating downstream mo-
lecular mechanisms that regulate pro-hypertrophic genes (Cheng et al., 
2005; Santos et al., 2011; Shih et al., 2001; Sirker et al., 2007; Xiao et al., 
2002). Another mechanism by which ERK1/2 signaling stimulates the 
hypertrophic growth in cardiomyocytes is that related to phosphoryla-
tion and activation of the GATA4-cardiac transcription factor. GATA4 is 
a regulator of many cardiac structural genes, as well as genes activated 
in response to phenylephrine, ET-1, Ang II (Liang et al., 2001; Tang 
et al., 2011) and other hormones associated with cardiac remodeling. 

Thus, considering the broad involvement of ERK1/2 in different 
settings of cardiac hypertrophy, it has been proposed that this MAPK 
pathway contributes to hypertrophic responses via two distinct mech-
anisms. The mechanism that may be responsible for driving physiolog-
ical hypertrophy involves the Gα subunit of Gq activating the classical 
MAPK signalling cascade (Raf/MEK/ERK), which results in phosphory-
lation of the threonine and tyrosine residues of ERK1/2 by MEK1/2 
(Anderson et al., 1990; Robbins et al., 1993), leading to protein syn-
thesis and cell growth (Bernardo et al., 2010). In contrast, autophos-
phorylation of ERK1/2 at residue Thr188 results from the association of 
Gβγ subunits with the Raf/MEK/ERK complex, directing ERK1/2 to the 
nucleus to control factors that initiate the transcription of genes asso-
ciated with pathological forms of hypertrophy (Lorenz et al., 2009; Vidal 
et al., 2012). 

Additionally, some hormones act by interfering with the effects of 
ERK activation associated with hypertrophy. For example, C-type 
natriuretic peptide (CNP) has an inhibitory action on the ET-1-induced 
phosphorylation of ERK, accompanied with the suppression of the ET- 
1-stimulated activity of GATA-4 and the expression of molecular 
markers of cardiac hypertrophy such as atrial natriuretic peptide (ANP), 
brain natriuretic peptide (BNP) and alpha skeletal muscle isoform of 
actin (Tokudome et al., 2004). Notably, Ang II-induced ERK activation is 
associated with cardiac hypertrophy and interstitial fibrosis in female 
mice, but these effects were inhibited by estrogen via ERβ, demon-
strating another protective mechanism by counteracting 
pro-hypertrophic signalling pathway (Pedram et al., 2008). 
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The JNK and p38 branches of the MAPK cascade are collectively 
known as stress-activated MAPKs due to their specific responses to 
physical, chemical and physiological stressors (Kyriakis and Avruch, 
2012). On cardiac tissue, studies are inconsistent on whether JNK and 
p38 are implicated in beneficial or deleterious mechanisms associated 
with hypertrophy. Loss-of-function studies demonstrated that p38 and 
JNK have crucial roles as negative regulators of cardiac hypertrophy 
(Liang and Molkentin, 2003; Maillet et al., 2013). In this context, the use 
of a specific p38 inhibitor compound enhanced IGF-1–induced physio-
logical cardiomyocyte hypertrophy, as observed by increase in protein 
synthesis without ANP promoter activation (Taniike et al., 2008). Sup-
porting that finding, cardiac-specific suppression of p38 or JNK1/2 
dominant-negative transgenic mice displayed increased interstitial 
fibrosis, cardiomyocyte apoptosis and cardiac hypertrophy in response 
to pressure overload (Liang et al., 2003; Nishida et al., 2004; Zhang 
et al., 2003a). There is also exacerbation of cardiac hypertrophy and 
cardiomyocyte apoptosis in mice with a cardiac-specific deletion of 
MKK4 (the upstream kinase that activates JNK and p38) in response to 
pressure overload and β-adrenergic stimulation with isoproterenol (Liu 
et al., 2009). Interestingly, a mechanism involving JNK antagonizing the 
pathological growth response through crosstalk with calcineur-
in/nuclear factor of activated T cells (NFAT) signalling was suggested 
(Liang et al., 2003; Liu et al., 2009). 

In particular, the physiological hypertrophy resulting from thyroid 
hormone did not alter the expression of either phosphorylated p38 or 
JNK levels in the myocardium (Araujo et al., 2010; Elnakish et al., 2012; 
Teixeira et al., 2018). On the other hand, JNK is upregulated in human 
hearts with hypertrophic cardiomyopathy, in pressure overload-induced 
hypertrophic mouse hearts and in aldosterone-treated cardiomyocytes 
(Ma et al., 2018; Okoshi et al., 2004). Both JNK and p38 are stimulated 
in cardiomyocytes by hormones that act on pathological heart growth, 
such as ET-1, Ang II and phenylephrine (Bogoyevitch et al., 1995; Ma 
et al., 2018; Okoshi et al., 2004; Rajapurohitam et al., 2012), but only 
p38 is required for ANP expression and morphological changes observed 
during the development of myocyte hypertrophy (Nemoto et al., 1998). 
Consistent with that, p38 activation mediates ET-1-induced GATA4 
binding to BNP gene (Kerkelä et al., 2002). The pharmacological inhi-
bition of p38 MAPK blunted hypertension and cardiac hypertrophy in 
response to Ang II (Bao et al., 2007) and blocked protein synthesis and 
the stimulation of other hypertrophic responses in cardiomyocytes 
treated with the same Ang II or ET-1 agonist (Kerkelä et al., 2002; 
Rajapurohitam et al., 2012). The last study demonstrated that Ang II and 
ET-1 stimulate leptin production in cultured neonatal myocytes via p38 
activation. Consequently, p38 MAPK has also been shown to mediate the 
hypertrophic effects of leptin in human and rat ventricular car-
diomyocytes as well as mechanisms associated with myocardial matrix 
remodeling, such as collagen content and matrix metalloproteinase-2 
activity (Madani et al., 2006; Rajapurohitam et al., 2003). Together, 
these findings suggest that sustained p38 or JNK activation are also 
involved in the pathogenesis of hypertrophy and heart failure (Bernardo 
et al., 2010; Maillet et al., 2013). 

The least studied subfamily, ERK5, also plays a role in regulating 
cardiac growth in vitro and in vivo. Adenoviral-mediated expression of 
constitutively activated MEK5 (a specific upstream kinase of ERK5) 
showed that the MEK5–ERK5 pathway controls the addition of sarco-
meres in series within cardiomyocytes, inducing these cells to assume a 
highly elongated morphology (Nicol et al., 2001). The same study also 
demonstrated that transgenic mice that overexpressed MEK5 in the 
heart developed a pronounced and fatal decompensating eccentric car-
diac hypertrophy. Compared to other MAPKs, the ERK5 signalling 
branch is less well characterized for specific hormone-induced cardiac 
hypertrophy contributions. However, it has been demonstrated that 
ERK5 is activated in phenylephrine-treated cardiomyocytes, contrib-
uting to the upregulation of cardiomyocyte foetal gene expression (ANP, 
BNP and alpha skeletal muscle isoform of actin) (Nicol et al., 2001). 
Additionally, aldosterone (Araujo et al., 2016), ET-1 (Chu et al., 2011) 

and Ang II stimulate ERK5 in cardiomyocytes, with Ang II receptor type 
1 (AT1)-mediated Ang II-induced ERK5 phosphorylation (Zhao et al., 
2010). Interestingly, Ang II-induced cardiac hypertrophy associated 
with ERK5 activation is attenuated in androgen receptor knockout male 
mice (Ikeda et al., 2005), indicating the influence of sex hormones on 
left ventricle mass. 

Due to the diverse components of the MAPK signalling pathway, 
additional mechanistic studies on hormonal-specific responses associ-
ated with distinct isoforms of the subfamilies and their interactions with 
other signalling cascades are required to determine the appropriate 
therapy for cardiac hypertrophy and heart diseases. 

2.3. AMPK 

Heart growth is a process that results from coordinated increase in 
cardiomyocytes size associated with changes in metabolism of these 
cells (Tham et al., 2015). In this context, AMP-activated protein kinase 
(AMPK) is a heterotrimeric complex containing one catalytic α subunit 
(either α1 or α2) and two regulatory subunits (β and γ) that acts as an 
energy sensor to detect the intracellular ratio of AMP/ATP to maintain 
cellular energy homeostasis. After AMP binds to the AMPK γ subunit, the 
allosteric change in the kinase structure allows AMPK phosphorylation 
by upstream kinases, such as liver kinase B1 (LKB1), 
Ca2+-/calmodulin-dependent protein kinase β (CaMKKβ) or trans-
forming growth factor β-activated kinase 1 (TAK1). The activity of 
AMPK is mainly determined by the phosphorylation of threonine 172 
(Thr172) on its catalytic α subunit, which is consistently used as an in-
dicator of the activation state of the kinase. Once activated, AMPK pri-
marily modulates cardiac metabolism but also plays an essential role in a 
variety of non-metabolic biological processes in the heart, including the 
regulation of protein synthesis, transcriptional activity and cardiac 
fibrosis in response to hypertrophic stimuli (Li et al., 2017). 

Some studies propose that long-term inhibition of AMPK exacerbates 
pathological hypertrophy, leading to heart failure, whereas intermittent 
AMPK activation has a cardioprotective role (Lipovka and Konhilas, 
2015; Maillet et al., 2013). Thus, previous data demonstrated that thy-
roid hormone rapidly activates AMPK signalling both in isolated car-
diomyocytes cultures (Takano et al., 2013) and in the cardiac tissue of 
T3-treated rats (Tavares et al., 2013). Additionally, gain/loss of function 
experiments confirmed the important contribution of AMPK in con-
trolling protein synthesis and, consequently, thyroid hormone-induced 
cardiomyocyte hypertrophy (Takano et al., 2013). Likewise, the use of 
nucleoside 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside 
(AICAR), an analogue of AMP that is capable of stimulating AMPK, 
suppressed the IGF-1 and insulin-induced increase in cardiomyocyte 
surface area (Kim et al., 2008). 

The effects of other pro-hypertrophic stimuli are blunted by treat-
ment with different pharmacologic agents that activate AMPK. Treat-
ment with AICAR or metformin attenuated the increases in both protein 
synthesis and cell surface area associated with phenylephrine- and Ang 
II-induced cardiomyocyte hypertrophy (Chan et al., 2004; Hernández 
et al., 2014; Pang et al., 2010; Stuck et al., 2008). Interestingly, 
resveratrol treatment reduced oxidative stress, prevented the increase in 
systolic blood pressure and counteracted cardiac hypertrophy in Ang 
II-infused mice through AMPK signalling (Dolinsky et al., 2013, 2015). 
Corroborating such findings, the use of pterostilbene and gnetol, which 
are analogues of resveratrol, suppressed ET-1-induced cardiomyocyte 
hypertrophy in vitro, suggesting AMPK is a potential mediator of these 
cardioprotective compounds (Akinwumi et al., 2017). 

In further studies, metformin treatment attenuated cardiac hyper-
trophy and dysfunction in mice that were subjected to transverse aortic 
constriction (Fu et al., 2011; Xu et al., 2014), which represents a widely 
used model of pressure overload associated with catecholamine excess 
(Schneider et al., 2011). Conversely, AMPKα2 knockout mice are more 
susceptible to developing cardiac hypertrophy than wild-type animals in 
the context of pressure overload and isoproterenol injections 
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(Zarrinpashneh et al., 2008; Zhang et al., 2008). Associated to such 
findings, it was demonstrated that AMPK signaling contributes to the 
inhibitory effects of adiponectin on myocardium hypertrophy after in 
vivo pressure overload model and as well as in vitro cultured car-
diomyocytes stimulated by Ang II and α-adrenergic receptor agonist 
(Shibata et al., 2004). Estrogen-mediated cardiomyocyte protection in 
Ang II-induced hypertrophy and cardiac injury is due to the upregula-
tion of Sirtuin 1 and also the activation of AMPK (Shen et al., 2014). 

These findings demonstrate that AMPK is a critical negative regu-
lator of physiological and pathological cardiac growth in response to 
different stimuli and confers actions related to reducing protein syn-
thesis. In light of this, AMPK counteracts protein synthesis and cell 
growth via inhibition of pathways such as the eukaryotic elongation 
factor-2 (eEF2)–eEF2 kinase axis and the mTOR–p70 ribosomal S6 
protein kinase (p70S6K) pathway (Chan and Dyck, 2005; Zhang et al., 
2008). 

It is important to note that the protective effects of AMPK related to 
cardiac hypertrophy and heart failure also include anti-proliferative and 
anti-fibrotic effects (Beauloye et al., 2011). Such findings have been 
shown in studies in which AMPKα2 knockout mice were subjected to 
pressure overload models (Zhang et al., 2008, 2018) or isoproterenol 
injection (Wang et al., 2016) and showed exacerbated myocardial 
fibrosis in the absence of AMPK. Additionally, isoproterenol-induced 
cardiac fibrosis was reduced by exercise training via AMPK activation 
(Ma et al., 2015). Interestingly, AMPK activation by metformin treat-
ment alleviates isoproterenol-induced cardiac fibrosis in both young and 
old mice (Wang et al., 2016). The protective effect of estrogen via ERβ 
signalling, preventing mechanisms involved with the fibrotic process in 
response to Ang II and ET-1 is mediated by AMPK (Pedram et al., 2016). 
The increased phosphorylation of AMPK is also a key mechanism stim-
ulated by CNP that contributes to abolish atrial fibrosis and dysregula-
tion of gap junctional proteins such as connexin (Cx40 and Cx43) 
induced by Ang II (Ding et al., 2019). 

Although most studies have demonstrated a beneficial effect of 
AMPK on the heart, the role of AMPK activation during the progression 
of cardiac hypertrophy and remodeling remains contentious, since it 
stimulates either adaptive or maladaptive responses, depending on the 
nature and the duration of action of the stimuli (Lipovka and Konhilas, 
2015). For example, Hattori et al. (2006) found increased cardiac hy-
pertrophy in response to Ang II + AICAR treatment compared with that 
of rats that were treated with Ang II alone, and AICAR enhanced cell 
proliferation and collagen synthesis induced by Ang II in cardiac fibro-
blasts (Hattori et al., 2006). These findings suggest that such effects of 
AICAR might be associated with the concomitant activation of AMPK 
and the ERK-proliferative pathway. Moreover, Ang II induced similar 
cardiac hypertrophy in AMPKa2-knockout and wild-type mice, and 
phosphorylation of AMPKa-Thr172 contributed to in vivo 
thyroxine-induced cardiac hypertrophy (Jiang et al., 2010). 

Considering the existence of some discordant findings, further 
investigation is required to determine the appropriate roles of AMPK 
within the heart. However, most of the emerging evidence has indicated 
that AMPK signalling pathway is associated with cardioprotective 
functions and may be considered as an attractive therapeutic target for 
treating cardiac hypertrophy and remodeling observed in cardiovascular 
diseases associated with hormonal influence. 

2.4. Calcium-activated signalling pathway 

Calcium is an important second messenger for GPCRs and biome-
chanical stress and plays a central role in controlling contractile function 
and heart growth (Frey et al., 2000; Sugden, 2001). In cardiomyocytes, 
two major calcium-dependent signalling pathways are involved in the 
control of cardiac hypertrophy: 1) the calcineurin/NFAT signalling 
pathway and 2) the calmodulin-dependent protein kinase II (CaM-
KII)/myocyte enhancer factor 2 (MEF2) signalling pathway. Calcineurin 
is a serine/threonine protein-phosphatase composed of a catalytic 

subunit (CnA) and a regulatory subunit (CnB) (Klee et al., 1979). 
Increased calcium levels promote calcineurin activation by the 
calcium-binding adaptor protein calmodulin (Wilkins et al., 2004). In 
addition, calcineurin activation is also affected by the redox state of 
cardiomyocytes. The best-characterized target of calcineurin is NFAT. 
When activated, calcineurin dephosphorylates cytoplasmic NFAT in 
conserved serine residues in the N-terminal domain, promoting nuclear 
translocation (Okamura et al., 2000). In the nucleus, NFAT interacts 
with transcription factors such as GATA-4, activator protein-1 (AP-1) 
(c-Jus/c-Fos) and MEF2, increasing NFAT-DNA interactions and subse-
quent gene transcription, which is involved in the development of the 
heart and postnatal cardiac growth (Wilkins et al., 2004). 

In 1998, Molkentin and colleagues demonstrated for the first time 
the role of calcineurin in the development of cardiac hypertrophy. 
Calcineurin overactivation in transgenic mice led to pathological cardiac 
hypertrophy, fibrosis, congestive heart failure and sudden death (Mol-
kentin et al., 1998). Furthermore, calcineurin activity was increased in 
patients with cardiac hypertrophy and heart failure (Haq et al., 2001), 
and inhibition of this protein mitigated heart growth in mice (Sussman 
et al., 1998). Classically, GPCR stimulation by Ang II, ET-1 and cate-
cholamines or stimulation by mineralocorticoid leads to calcineurin 
activation in cardiomyocytes, and treatment with calcineurin inhibitor 
(cyclosporin A or FK506) attenuates hypertrophic growth in response to 
these hormones (Li et al., 2005; Khalilimeybodi et al., 2018; Molkentin 
et al., 1998; Takeda et al., 2002; Taigen et al., 2000). More specifically, 
Lin and collaborators (2009) have shown that isoproterenol and aldo-
sterone stimulate heart hypertrophy in vivo and in vitro by activation of 
miR-23a-mediated NFATc3. On the other hand, CNP inhibit phenyl-
ephrine-, Ang II- or ET-1-induced cardiomyocyte hypertrophy by sup-
pressing the calcineurin/NFAT pathway (Kilic et al., 2010). 
Calcineurin/NFAT activation is also essential for the pathological 
growth of the testosterone-stimulated heart. Testosterone-induced car-
diac hypertrophy and increased NFAT-luciferase activity was blocked by 
the calcineurin inhibitors FK506 and cyclosporin A (Duran et al., 2016). 
In addition, leptin-induced cardiomyocyte growth is associated with 
functional impairment via calcineurin-mediated pathway (Jong et al., 
2019). 

Considering the set of results presented above, it seems clear that the 
calcineurin/NFAT signalling pathway is involved in the pathological 
development of cardiac hypertrophy. In accordance with this idea, some 
studies have demonstrated that physiological stimulation with IGF-1 did 
not alter calcineurin/NFAT signalling (Carrasco et al., 2014; Wilkins 
et al., 2004). Additionally, estrogen attenuated pathological hypertro-
phy by calcineurin/NFAT repression (Donaldson et al., 2009; Qin et al., 
2008; Wu et al., 2005). However, although involved in the pathological 
hypertrophy in response to different endocrine molecules, genetic 
deletion of calcineurin results in embryonic lethality, indicating that this 
protein is also necessary for normal postnatal physiological growth of 
the heart (Schaeffer et al., 2009). In this context, acute stimulation with 
thyroid hormone resulted in nuclear accumulation of NFAT in cardiac 
cells in vivo and in vitro (Senger et al., 2018; Takano et al., 2017). 

Regarding serine/threonine CaMKII, four isoforms encoded by 
different genes (CaMKIIα, CaMKIIβ, CaMKIIγ and CaMKIIδ) have been 
described. The isoform that is predominantly expressed in adult car-
diomyocytes is CaMKIIδ, which has two variant isoforms: CaMKIIδB 
(preferentially located in the nucleus) and CaMKIIδC (preferentially 
located in the cytosol) (Edman and Schulman, 1994; Srinivasan et al., 
1994). Under basal conditions, the catalytic domain of CaMKIIδ is 
limited by the regulatory domain, which blocks the catalytic activity of 
CaMKII. Increased levels of calcium stimulate calmodulin binding to the 
regulatory domain, which generates a conformational shift that releases 
the association between the regulatory and catalytic domains and allows 
its phosphorylation (Rostas and Dunkley, 1992). Another alternative 
approach to activating CaMKII is through cellular enhancement of 
reactive oxygen species in the absence of the calcium-calmodulin com-
plex (Erickson et al., 2008; Luczak and Anderson, 2014). When activated 
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in cardiomyocytes, CaMKIIδ actives MEF2 by phosphorylating class II 
histone deacetylases (HDACs) (Gordon et al., 2009). 

Growing evidence correlates the activation of CaMKIIδ and cardiac 
growth by different endocrine stimuli. Upregulation of CaMKIIδ in 
transgenic mice leads to cardiac hypertrophy and heart failure devel-
opment (Zhang et al., 2003b), while its inhibition blocks ET-1-induced 
cardiomyocyte growth and mitigates heart failure (Bossuyt et al., 
2008). In this sense, Gαq11-knockout-mice prevented pressure 
overload-induced cardiac dysfunction and heart growth by suppressing 
CaMKIIδ (Westenbrink et al., 2015). Furthermore, G protein activation 
by high levels of norepinephrine, phenylephrine, ET-1 or Ang II directly 
induces cardiac hypertrophy via CaMKII signalling (Li et al., 2011). 
Similarly, Ca2+/CaMKIIδ pathway regulates IGF-1-, testosterone-, and 
aldosterone-induced cardiac myocyte hypertrophy (Chen et al., 2019; 
Duran et al., 2017; Mhatre et al., 2018; Rouet-Benzineb et al., 2018). On 
the other hand, CNP attenuates ET-1-induced cardiac myocyte hyper-
trophy via a Ca2+/CaMKII-associated mechanism (Tokudome et al., 
2004). 

2.5. Other signaling 

In addition to the commonly described signaling pathways involved 
in the development of cardiac hypertrophy, other parallel pathways can 
be recruited, cooperating with such outcome or even with the devel-
opment of heart failure. These signaling are activated during the cardiac 
remodeling setting and associated with critical processes such as 
angiogenesis, inflammation and oxidative stress. 

In this context, the cardiomyocyte growth without parallel blood 
vessel growth might lead to negative effects upon heart function. Then, 
angiogenesis is promoted during cardiac remodeling to compensate the 
increased distances between capillaries and cardiomyocytes. Thyroid 
hormone as well as insulin and IGF-1 have proangiogenic action 
throughout the cardiac hypertrophy development (Luidens et al., 2010; 
Iliadis et al., 2011; Su et al., 2003). However, the inadequate oxygen and 
nutrient supply in the face of the increased metabolic demand of the 
hypertrophic myocardium may lead to a hypoxia environment, which 
has been suggested to be involved in the transition from compensated to 
decompensated cardiac hypertrophy. Hypoxia-inducible factor 1α 
(HIF1α) is the central mediator of hypoxic response and has the VEGF as 
one of the primary target genes (Ramakrishnan et al., 2014). 
HIF-1α/VEGF signaling pathway is increased by thyroid hormone, 
which is associated to physiological growth response (Anjos-Ramos 
et al., 2006; Luidens et al., 2010). In contrast, this signaling is down-
regulated in long term cardiac hypertrophy resulted by 
pressure-overload model (Tian et al., 2020; Zeriouh et al., 2019) and by 
stimulation with Ang II (Guan et al., 2013), endorsing the cardiac 
angiogenesis impairment along with the pathological hypertrophy. 

Factors secreted by endothelial cells have emerged as potential 
molecules that may impact the morphology and function of cardiac 
myocyte and non-myocyte cells. In this line, the nitric oxide (NO), that is 
primarily involved in vasodilation, might be expressed within myocar-
dium, and modulated by hormones in the context of cardiac hypertro-
phy. The physiological hypertrophy promoted by thyroid hormones and 
IGF-1 stimulates NO production (Da Silva et al., 2018; Burgos et al., 
2017). Estrogen also stimulates the expression of NOS isoforms in both 
neonatal and adult cardiac myocytes (Nuedling et al., 1999), suggesting 
that the protective mechanism of estrogen in cardiac hypertrophy and 
other cardiovascular consequences may be partially attributed to NO 
signaling (Bhuiyan et al., 2007). On the other hand, in relation to 
pathological hypertrophy models as that induced by Ang II, car-
diomyocyte growth is accompanied by reduced NO synthase (NOS) ac-
tivity and NO production (Jiang et al., 2018). However, when NO 
signaling is activated by treatment with nebivolol (a third-generation 
beta-blocker) occurs the reduction of cardiomyocyte hypertrophy 
stimulated by isoprenaline or Ang II in neonatal cardiomyocytes, 
evidencing the important role of NO for the prevention of pathological 

hypertrophy growth (Ozakca, 2019). Other studies also reinforce the 
contribution of NO signaling to counter-regulatory the cardiac hyper-
trophy induced by Ang II and neurohormonal stimuli as isoproterenol 
and phenylephrine (Belge et al., 2014; Jesus et al., 2018). Then, NO 
signaling has emerged as a cardioprotective target to be considered in 
the scenario of cardiac hypertrophy and heart failure. 

Cardiac hypoxia and impaired NO signaling have been associated 
with stress oxidative and inflammatory responses. The nuclear factor 
kappa B (NF-κB) represents a key transcription factor that regulates such 
responses and growing evidence have also demonstrated the contribu-
tion of NF-κB signaling pathway in both in vivo and in vitro cardiac 
hypertrophy. NF-κB activation is required for hypertrophic growth of 
cardiomyocytes stimulated by several hypertrophic agonists, including 
thyroid hormone, phenylephrine, ET-1 and Ang II (Purcell et al., 2001; 
Rajapurohitam et al., 2012; Takano et al., 2017, 2018). Insulin can also 
activate NF-κB in cardiac myoblasts (Madonna et al., 2014). The phar-
macological blockage or cardiomyocyte-specific NF-κB inhibition has 
been shown to attenuate Ang II, ET-1, and thyroid hormone-induced 
hypertrophy (Rajapurohitam et al., 2012; Takano et al., 2017). In 
contrast, NF-κB inhibition accelerates the progression of cardiac 
remodeling with increased cardiomyocyte apoptosis stimulated by Ang 
II-dependent genetic heart failure model (Zelarayan et al., 2009). These 
findings reveal that the exact role of NF-κB in cardiac hypertrophy is 
controversial in different contexts of physiological and pathological 
cardiac hypertrophy and additional studies are still necessaries to clarify 
its function. 

Of note, growing evidence suggest the vast field of signaling path-
ways that may contribute to cellular responses that culminate in cardiac 
hypertrophy. The hormonal influence on these signaling and possible 
interventions in order to blockade or delay the prejudicial responses 
associated to these mechanisms remains to be further explored. 

2.6. Ubiquitin-proteasome system (UPS) in cardiac hypertrophy 

The balance between protein synthesis and degradation is one key 
process of cardiac hypertrophy development, which involves an adap-
tation in protein turnover. In this context, in addition to the signaling 
pathways linked to protein synthesis, as already described in this review, 
processes related to protein degradation have also been reported par-
ticipants in cardiac growth. 

The ubiquitin-proteasome system (UPS) is the main non-lysosomal 
pathway for intracellular protein degradation in the heart (Ciechan-
over et al., 1978). The UPS is responsible for several biological processes 
by controlling protein quality and removing misfolded, damaged and 
oxidized proteins in the cytoplasm and nucleus (Hirsch et al., 2004). 
Regarding cardiac hypertrophy, emerging evidence suggest that the UPS 
also favours protein synthesis by degrading proteins that suppress this 
process, which contributes to heart growth (Shukla and Rafiq, 2018). In 
general, activation of the UPS and increased expression of proteasome 
subunits have been described in different models of cardiac hypertrophy 
(Drews et al., 2010; Lee et al., 2016; Li et al., 2015; Meiners et al., 2008). 

In this context, proteasomal inhibition affects cardiomyocyte growth 
under both physiological and pathological stimuli (Cacciapuoti, 2014). 
Then, proteasome inhibition prevented isoproterenol-induced cardiac 
hypertrophy by blocking NF-κB activation (Stansfield et al., 2008) and 
mTOR signaling pathway (Zhang et al., 2015). Similarly, the proteasome 
inhibitor MG132 reduced cardiomyocyte growth and improved cardiac 
function by regulating the ERK1/2 and JNK1 signalling pathways (Chen 
et al., 2010). In accordance with these data, proteasome inhibition 
supresses Ang-II-induced cardiac hypertrophy and remodeling by 
regulating multiple downstream mediators (Akt, ERK 1/2, p38, STAT3, 
TGF-β, NF-κB and Smad) (Li et al., 2015; Ma et al., 2013; Shu et al., 
2018). On the other hand, acute administration of proteasome inhibitor 
MG-262 stimulated calcineurin-NFAT transactivation and promoted left 
ventricle dilatation and functional decompensation (Tang et al., 2010). 

Lino et al. (2019) recently showed activation of cardiac UPS in 
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Table 1 
Relationship of some signaling gain/loss of function studies and cardiac hy-
pertrophy outcome.  

GAIN OF FUNCTION STUDIES 

Animal model or 
pharmacological 
intervention 

Hypertrophic 
stimuli 

Effects in cardiac 
hypertrophy 
context 

References 

Transgenic mice 
with increased 
PI3K (p110α) 

N/A Develops cardiac 
hypertrophy with 
preserved 
cardiac function 
and lifespan 

Shioi et al. 
(2000) 

Transgenic mice 
with cardiac 
specific activation 
of MEK1-ERK1/2 
and MEK1 
adenovirus- 
infected 
cardiomyocytes 

N/A Develops 
concentric 
hypertrophy 
without 
interstitial 
fibrosis, 
increased cardiac 
function and 
cardiomyocyte 
resistance to 
apoptosis 

Bueno et al. 
(2000) 

Transgenic mice 
with 
overexpression of 
MEK5 in the heart 
and constitutively 
activated MEK5 in 
cardiomyocytes 

N/A Develops 
elongated 
morphology of 
cardiomyocytes, 
eccentric 
hypertrophy and 
dilated 
cardiomyopathy 

Nicol et al. 
(2001) 

Pharmacological 
activation of 
AMPK (AICAR or 
metformin) in 
cardiomyocytes 

IGF-1, insulin, 
thyroid hormone, 
phenylephrine 
and Ang II 

Attenuates 
protein synthesis 
and increase in 
cardiomyocyte 
surface area 

Chan et al. 
(2004)  
Hernández et al. 
(2014) 
Kim et al. 
(2008) 
Pang et al. 
(2010) 
Takano et al. 
(2013) 
Stuck et al. 
(2008) 

Transgenic mice 
with increased 
Calcineurin 

N/A Leads to 
pathological 
cardiac 
hypertrophy, 
fibrosis, 
congestive heart 
failure and 
sudden death 

Molkentin et al. 
(1998) 

Transgenic mice 
with upregulation 
of CaMKIIδ 

N/A Leads to cardiac 
hypertrophy and 
heart failure 
development 

Zhang et al. 
(2003) 

LOSS OF FUNCTION STUDIES 
Animal model or 

pharmacological 
intervention 

Hypertrophic 
stimuli 

Effects in 
cardiac 
hypertrophy 
context 

References 

PI3K (p110γ) 
knockout mice 

catecholamine Induces 
protection of 
cardiac 
dysfunction 

Oudit et al. 
(2003) 
Oudit and 
Kassiri (2007)  
Pretorius et al. 
(2009)  
Crackower et al. 
(2002) 

Akt1 knockout mice IGF-1 Blunts 
physiological 
hypertrophic 
responses, but 
not pathological 
responses, and 
develops cardiac 

DeBosch et al. 
(2006)  

Table 1 (continued ) 

GAIN OF FUNCTION STUDIES 

Animal model or 
pharmacological 
intervention 

Hypertrophic 
stimuli 

Effects in cardiac 
hypertrophy 
context 

References 

dilation and 
dysfunction 

p38 inhibition with 
SB203580 in 
cardiomyocytes 

IGF-1 Enhances 
physiological 
cardiomyocyte 
hypertrophy, 
with increased 
protein synthesis 
that is not 
accompanied by 
ANF promoter 
activation 

Taniike et al. 
(2008) 

p38 inhibition with 
SB203580 in vivo 

Ang II, ET-1 Attenuates 
hypertension and 
cardiomyocyte 
hypertrophy 

Bao et al. (2007) 
Kerkelä et al. 
(2002)  
Rajapurohitam 
et al. (2012) 

Cardiac-specific 
deletion of MKK4 
(upstream kinase 
of JNK and p38) 

Pressure overload 
and isoproterenol 

Exacerbates 
cardiac 
hypertrophy and 
cardiomyocyte 
apoptosis 

Liu et al. (2009) 

AMPKα2 knockout 
mice 

Pressure overload 
and isoproterenol 

Augments the 
cardiac 
hypertrophy and 
fibrosis 

Zarrinpashneh 
et al. (2008)  
Zhang et al. 
(2008) 
Zhang et al. 
(2018) 
Wang et al., 
2016 

AMPKα2 knockout 
mice 

Thyroid hormone Alleviates 
cardiac 
hypertrophy 

Jiang et al. 
(2010) 

Calcineurin 
inhibition with 
cyclosporin A or 
FK506 

Ang II, ET-1, 
catecholamines, 
testosterone and 
mineralocorticoid 

Attenuates 
cardiomyocyte 
hypertrophic 
growth in vivo 
and in vitro 

Duran et al. 
(2016) 
Li et al. (2005)  
Khalilimeybodi 
et al. (2018) 
Molkentin et al. 
(1998) Takeda 
et al. (2002) 
Taigen et al. 
(2000) 

Genetic deletion of 
calcineurin 

N/A Results in 
embryonic 
lethality 

Schaeffer et al. 
(2009) 

CaMKIIδ inhibition 
with KN93 

ET-1 Blocks 
cardiomyocyte 
growth and 
improves heart 
failure 

Bossuyt et al. 
(2008) 

Proteasome 
inhibition with PS- 
519, PS-341 and 
MG132 

Isoproterenol, 
Ang II and 
pressure overload 

Prevents cardiac 
hypertrophy and 
attenuates 
collagen 
synthesis 

Stansfield et al. 
(2008) 
Chen (2010) 
Ma et al. (2013) 

Proteasome 
inhibition with 
acute dose of MG- 
262 

Pressure overload Contributed to 
left ventricle 
dilatation and 
functional 
decompensation. 

Tang et al. 
(2010) 

Immunoproteasome 
inhibition with 
ONX 0914 

Isoproterenol Attenuates 
cardiac 
hypertrophy 

Zhang et al. 
(2015) 

Inhibition of key 
component of the 
proteasome - 
UBA1 protein 

Ang II Supresses cardiac 
hypertrophy and 
remodeling 

Shu et al. (2018) 

Pharmacological 
blockage or 
cardiomyocyte- 
specific NF-κB 
inhibition 

Ang II, ET-1 and 
thyroid hormone 

Prevents 
cardiomyocyte 
hypertrophic 
response in vivo 
and in vitro 

Rajapurohitam 
et al. (2012)  
Takano et al. 
(2017) 
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thyroid hormone-induced cardiac hypertrophy, which possibly con-
tributes to the maintenance of protein quality and cardiomyocyte 
growth, although the levels of polyubiquitinated proteins were not un-
altered (Lino et al., 2019). Additionally, high levels of E3-ligase 
muscle-specific ring finger-1 (MURF1) inhibit thyroid 
hormone-induced cardiac hypertrophy by thyroid hormone receptor 
(Trα) inactivation (Kristine et al., 2016). In the same context, the acti-
vation of MURF1 and E3-ligase muscle atrophy F-box (MAFbx/A-
trogin-1) also inhibited physiological cardiomyocyte growth mediated 
by IGF-1 factor via c-Jun in vivo (Skurk et al., 2005; Wadosky et al., 
2014). 

Together, these findings show that, although there are few studies 
that address the role of UPS in the growing heart, dynamic changes in 
protein degradation occur during the development of myocardial hy-
pertrophy and may provide new possibilities for therapeutic targets 
(Drews et al., 2010). A list of the main studies of gain or loss of function 
in the setting of signaling pathways associated to cardiac hypertrophy 
was summarized in Table 1. 

3. Conclusion 

Human and animal studies and even experimental approaches using 
isolated cell cultures have indicated that some endocrine molecules 
activate signalling pathways that trigger physiological and pathological 
hypertrophy in cardiomyocytes and the entire heart. This is especially 
important in the context of various endocrine diseases in which the heart 
is not the main target organ affected but indirectly contributes to the 
worsening of the patient’s clinical condition. The molecular mechanisms 
that contribute to the development of cardiac hypertrophy are extraor-
dinarily complex and many key processes remain to be explored. Here, 
we addressed some endocrine factors and their signalling pathways 
primarily responsible for physiologic hypertrophic growth (such as in-
sulin, IGF-1, estrogen, VEGF, thyroid hormone, PI3K/Akt/mTOR and 
ERK) compared to hormone ligands and downstream signaling pathways 
which result in predominantly pathologic cardiac hypertrophy (such as 
Ang II, ET-1, catecholamines, aldosterone, testosterone, FGF23, p38, 
JNK and calcium-activated signalling pathway). Considering that 
pathological cardiac hypertrophy is an independent risk factor for heart 
failure in patients and physiological hypertrophy is indispensable for 
normal function, a better understanding of the mechanisms by which 
hormones differentially regulate cardiac hypertrophy may pave the way 
for future therapeutic strategies in the endocrine disease setting. 
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